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ABSTRACT 
 
It is well known that the major goal of the transportation system is to enhance 
mobility and crashes are unwanted by-products which have to be minimized 
while achieving the primary goal. Although general people value travel time more 
than any other outcomes of transportation system, traffic accidents impose huge 
economic burden on the society. A detail investigation of the State of California 
crash statistics showed overrepresentation of fatal, injury, alcohol related crashes, 
road departure crashes, speeding related crashes in Inland Empire and identified 
as one of the major transportation issues affecting this region. This seed-grant 
proposal aimed to investigate the reason behind the high crash statistics in 
Inland Empire by developing methodologies to identify crash hotspots and 
detecting the potential areas of safety improvements using Geographic 
Information System (GIS). However, significant challenges were faced during the 
research to obtain relevant crash data from Caltrans district 8. Hence the GIS 
based methodology was developed using data from another real city in the 
United States. The result of this study showed that spatial dependence plays a 
strong role in the analysis of road traffic injury crashes. These spatial 
dependences, accounted through the spatial autocorrelation helped detecting 
statistically significant clusters of fatal, severe and minor injury as well as 
pedestrian crashes. These clusters are overlaid with socioeconomic and road 
network layers to investigate if certain spatial, socioeconomic and traffic related 
factors are present near statistically significant crash clusters. Once this 
reconnaissance is completed, a more detailed site investigation is easier to find 
the contributory factors for fatal, injury and pedestrian crash occurrences.  
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INTRODUCTION 
 
Identification of crash “hotspots,” “blackspots,” “high risk” or “high collision 
concentration locations” is a standard practice in departments of transportation 
throughout the USA to ensure efficient allocation of safety dollars in reducing 
crash frequencies and severities. There are fairly good numbers of literature 
focused on methods for identifying “hotspots” utilizing advanced statistical 
methods such as empirical Bayes (EB) technique (1-6), full Bayes methodology 
(7-8), simulation methodology (9) and other innovative methods (10). It is now 
unanimously accepted in safety research that EB technique outperforms any 
other simplified method of crash hot spot detection— especially the crash counts 
or rates methodology; nevertheless it is still seen that many cities and 
departments of transportation use these simplified techniques to rank high crash 
road segments, ramps and intersections for further improvements. A possible 
explanation of this statues quo could be the complexity of these mathematical 
techniques, requiring special training and skills in statistical analysis that often 
prevent the implementation of these superior methodologies in practice. 
Additionally, these approaches are not generally combined with any visual tool or 
mapping software that could help displaying the outcome of these techniques. As 
a result, these methodologies, although sound and appropriate, have often been 
under-used by cities and DOTs, and they still depend on their in-house tools 
(may not be very accurate and sophisticated) to allocate their limited resources to 
make important decisions about ranking and improving high crash locations. 
Another drawback noticed in many DOTs is that they do not maintain a GIS 
crash database, which means they are unable to perform any GIS based crash 
mapping to detect concentration of high crash locations on their road network. 
While the GIS based methods may or may not be as superior as EB method, it is 
at least better than crash count or crash rate methods. Moreover, if overlaid with 
other layers, the GIS could help associating high crash locations with other crash 
causal factors, especially factors that are spatial in nature. There are also 
increasing interest to find the spatial factors affecting road traffic accidents, 
especially fatal and injury crash occurrence. A major reason for this growing 
interest is the fact that spatial factors such as land use, population density, 
population distribution, socio-economic factors as well as environmental factors 
have strong influences on crash occurrence in addition to the commonly known 
geometric design elements of roadways.  
  
In transportation safety applications, GIS has been widely used to geo-code 
accident locations, developing pin maps of crashes and database queries as 
performed by Levine et al.(11,12), Affum and Taylor (13), Austin et al. (14), Kim 
and Levine (15) and Miller (16). However, some researchers (11, 12, 16-21) 
incorporated some of the powerful analytical tools available in GIS software such 
as buffer, nearest neighbor method, simple density and kernel density estimation 
method of crash cluster detection to show spatial distribution of crashes at the 
road network level. 
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While GIS has been used in these studies not only for visual representation, but 
to enhance data integration and efficient handling of information from various 
sources; some of the powerful spatial statistical analysis tools are often under-
used in transportation safety analysis. As mentioned earlier, even with the rapid 
advancement of GIS in the last few decades, some public agencies do not have 
their crash database in GIS platform, and as a result they are unable to use 
some of these powerful but straightforward statistical analysis tools available in 
GIS. Another drawback of not using GIS in crash hotspot detection is the 
possibility of ignoring important spatial location specific information, which might 
have strong influence in crash occurrence. For example, spatial features near 
road networks might influence elevated crashes at a particular location, which will 
be very hard to detect in the absence of a tool like GIS. However, the good news 
is that, there are transportation research professionals who are very much 
interested in exploiting various advanced analytical tools available in commercial 
GIS software to investigate any association of crashes with spatial features of 
interest around a transportation network. For example, Flahaut et al. (22) used 
two different spatial statistical techniques: global autocorrelation index and kernel 
estimation to identify clusters of road segment crashes in Belgium; Xiao-Qin et al. 
(23) used hot-spot analysis tools available in GIS to locate snow related crash 
locations; Bejleri et al. (24) used customized methodologies in GIS to locate road 
segments and intersections with high pedestrian and bicycle related crashes. In 
addition to the issue of ignoring possible association of spatial physical and 
environmental factors by not using GIS, it is also important to mention that very 
few, if not any, studies consider the effect of spatial site specific factors in 
detecting hazardous road locations. While the EB method is considered to be 
efficient in hazardous site detection, researchers often consider the traits of a 
location, mostly through traffic volumes and sometime through geometric design 
properties. Although traffic volume is considered to be the single most important 
exposure variable, it is also well known that spatial location specific factors help 
explaining unobserved heterogeneity in crash data. For example, in a study, 
Bauer and Harwood (25) showed that traffic volume related variables could 
capture 16% to 38% of the variability in crashes, leaving a small (5 to 14%) 
portion of the variability explained by geometric design variables. However, the 
unexplained variability (about 40% in this case) could be attributed to both 
structured as well as unstructured error terms. In another study, Greibe (26) 
developed prediction models for both road links and junctions and showed that 
the road link model could capture more than 60% of the systematic variation, but 
the intersection model had lower explanatory power. Chin and Quddus (27) 
confirmed like others that traffic volumes are the most important factor, or main 
effect, predicting crashes. While these studies concluded traffic volume as the 
primary indicator variables, there are researchers such as Ivan et al. (28) and 
Ossenbruggen et al. (29) who examined the effect of land use on road segment 
crashes; Karlaftis and Tarko (30), Noland and Quddus (31) and Aguero-Valverde 
and Jovanis (32) investigated the effects of demographic patterns and weather 
on county-level crashes. However, none of these studies had been applied at the 
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intersection level to test if spatial factors have significant influence in high crash 
location detection. The omission of spatial site specific characteristics could lead 
to erroneous identification of crash hotspots or black-zones due to the fact that 
spatial autocorrelation is ignored. The concept of spatial autocorrelation is 
important when specific attributes of a variable tend to have interdependence 
over space. This phenomenon is true in case of so called crash hotspots or 
black-zones, where there are not only high frequency of crashes, but also higher 
concentration of certain types, maneuvers or other specific attributes of crashes 
are observed and tend to be overrepresented. In such cases, important 
information would be lost if spatial dependence of crashes is ignored. 
 
With this background, the primary aims of this research were:   
1) First of all, to develop a GIS based crash hotspot detection methodology by 
utilizing spatial statistical analysis tool available in GIS, and 
2) To identify association with spatial locational factors that has strong influence 
on crash occurrence.  
 
IDENTIFICATION OF SPATIAL CONCENTRATION OF CRASHES USING GIS 
 
There are several analytical tools available in GIS to analyze point features such 
as road traffic crash occurrences. Two of the very common point pattern detector 
tools available in GIS are i) quadrant analysis or the density analysis tool and ii) 
the nearest neighbor analysis tool. In recent years Kim and Levine (15) used 
nearest neighbor method to detect clusters of pedestrian crashes. They 
developed standard deviational ellipse of each of the nearest neighbor clusters 
and the number of points these ellipses contain to measure the dispersion and 
orientation of the points around the mean center of the clusters. Pulugurtha et al. 
(21) utilized the concept of quadrant or grid based analysis to compute crash 
density/ concentration as a measure to detect crash hot spots. In doing that they 
used two different techniques of density estimation, such as a) simple, and b) 
kernel density estimation tools available in Arc GIS toolbox. As expected, kernel 
density methodology provided higher accuracy of hot spot detection due to its 
sophisticated mathematical algorithm as opposed to the simple density 
computation method. After computing the densities, these researchers developed 
a composite score of high crash location ranking by combining three different 
methods: crash frequency, crash density and crash rates method. Sando et al. 
(33) also utilized a nearest neighbor algorithm for crash pattern detection, and 
compared the merits of this methodology with other statistical techniques such as 
regression analysis, neural network and Bayesian techniques. These authors 
suggested that in the absence of a priori knowledge about probability distribution 
of the count patterns; a nearest neighbor is very effective. 
 
While density analysis and nearest-neighbor analysis are commonly used in 
point pattern detection, both density and nearest-neighbor analysis treat all 
points i.e. crashes in this case, as if they are the same. In other words, these two 
methods analyze only the location of the point, but not their attributes. Spatial 
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statistical tools on the other hand take both the location of the crash and their 
attributes into account. As a result it is considered to be more powerful as it takes 
not only the location of the crash into account, but also the activities happening at 
a particular location. Specifically, spatial autocorrelation analysis assesses the 
extent to which the value of a variable X at a given location i, is related to the 
values of that variable at contiguous/neighboring locations. Hence the basic 
concept of spatial autocorrelation is related to the interdependence of a specific 
attribute over space. Clearly, this is the main idea behind investigating high crash 
concentration locations, i.e. to identify locations with unusually high numbers of 
specific types of crashes. The assessment of spatial correlation involves 
analyzing the degree to which the value of a variable for each location co-varies 
with values of that variable at nearby locations (22). When the level of co-
variation is higher than expected, contiguous locations have similar values and 
autocorrelation is positive. When the level of co-variation observed are negative, 
high values of the variable are contiguous with low values and the autocorrelation 
is negative. The lack of significant positive or negative co-variation suggests the 
absence of spatial autocorrelation. To quantify the spatial correlation, two popular 
indices: Geary’s Ratio and Moran’s I are generally used. These are known as 
global method of assessing spatial autocorrelation, and they measure and test if 
patterns of point distributions are clustered or dispersed in space with respect to 
their attribute values. In this context, it is important to mention that both Geary’s 
Ratio and Moran’s I measure autocorrelation for interval or ratio data. Most 
analysts favor Moran’s I as its distributional characteristics are more desirable 
and this index has greater general stability and flexibility. Moran’s I index is 
defined as 
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variance. In case of point pattern detection, generally the weight ijw is often used 
as the inverse of the distance between two points i and j . This is derived from 
first law of geography that suggests larger weights to points that are close and 

smaller weights to points that are far apart. Hence ijw is generally defined 

as
δ

ijd/1 , where δ may be taken any appropriate value such as 0.5, 1.0, 1.5, 2.0 
or any other number based on specific characteristics or empirical evidence 
associated with geographic phenomena in question. Many empirical studies in 
spatial autocorrelation have shown that a δ value of 2.0 for the exponent of 
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distance indicates a stronger reduction in the importance of the points located 
further away, making spatial association stronger with closest neighbors. Hence 
a widely acceptable value of δ = 2.0 has been adopted in this study.  
In terms of choice between Geary’s Ratio and Moran’s I  index, the major 
difference between Geary’s Ratio and Moran’s I is that in case of Geary’s Ratio 
the numerator consists of the square of the difference in attribute values for 

point i and point j  such that 
2)( ji xx − is considered instead of the measure 

))(( xxxx ji −− in case of Moran’s I.     
 
While this global method of assessing spatial autocorrelation existed for longer 
time, there are also Local Indicators of Spatial Association (LISA) such as local 
version of Moran’s I. This index is used to indicate the level of spatial 
autocorrelation at the local scale, i.e. a value of the index is calculated for each 
spatial unit i . The local Moran statistic for unit i is defined as 
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Similar to global Moran's I, a high value of local Moran indicates clustering of 
similar values and a low value means a clustering of dissimilar values of a 
variable. The cluster analysis tool available in GIS provides estimation of local 
Moran's values and the associated Z scores for all locations in the study area. 
The Z score represents the statistical significance of the index value, i.e. whether 
the apparent similarity (or dissimilarity) in values between the feature and its 
neighbors is greater than one would expect simply by chance. A high positive 
Z score for a feature indicates that the surrounding features have similar values 
and help finding locations with specific type of crash concentration. A low 
negative Z score for a feature indicates the feature is surrounded by dissimilar 
values. Once these Z scores are calculated, it is possible to identify statistically 
significant spatial locations with high crash concentration.  
 
 
APPLICATION OF THE METHODOLOY TO DETECT HIGH CRASH 
INTERSECTIONS 
 
The methodology described in previous sections is applied to detect crash 
concentration location of a real city in the USA. While the focus of this study is to 
detect high crash locations with fatal, severe injury and minor injury crashes, the 
methodology could be applied to detect any other crash types. In the following 
sections, descriptions of the data used are discussed first, followed by the 
application of spatial statistical techniques in GIS to detect crash concentration 
locations, and discussion of the findings. 
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Data Used 
 
Current growth and expansion of the Inland Empire along with the historically 
high crash statistics in this region, definitely seeks thorough investigation crash 
statistics and potential areas of safety enhancement and this was the primary 
aim of the seed grant project. To perform this task crash data were requested 
from the Inland Empire region, from Caltrans district 8. While some data were 
obtained from Caltrans in the beginning of the project, the team was unable to 
receive any further data instead of continued requests. Due to the absence of the 
required dataset, the research team went ahead and developed the methodology 
using crash data from a real city in the USA. The data used in this study are 
obtained from three different sources, including: a) crash data, b) spatial 
characteristics, and c) demographic data. The study sites examined in the study 
are signalized intersections including four-legged and T- junctions.  
 
Crash data 
The crash data for this study are obtained from the Accident Location 
Identification System database maintained by a western State. The database 
contains all of the micro-level information about crashes, such as the type of 
crash, severity, time of occurrence, crash location and description of sites, 
vehicle maneuvers before a crash, direction of movement of the vehicle prior to 
the crash, information about the people involved in the crash (both driver and 
passenger information), as well as vehicle information. For this study crash data 
from 2001 to 2004 at signalized intersections are collected and analyzed. 
Previous research on crash hot-spot identifications (9) suggests that an average 
of three years crash data should be used to detect high crash concentration 
locations. This minimizes abnormal fluctuation of crashes for a certain year as 
well as regression to the mean effect often described in safety literature. As a 
result a combined crash data from three year time period were used in this study 
and the data are categorized as intersection-related crashes if a crash occurred 
within the curb-line limits of the intersection, or if it occurred within the influence 
area of the intersection, defined as within 250 ft along any leg of the intersection 
(from the intersection center point).   
 
Demographic and socioeconomic data  
To investigate the spatial association of crash occurrence, demographic 
distribution of a location is very important to investigate. In case of pedestrian 
and bicycle related crashes it is generally assumed that people involved in 
crashes live or work at that place. While no such assumption could be made in 
case of other crash types, population density and demographic distribution could 
be associated with specific crash attributes. For example, if certain regions have 
higher than average young population and at the same time statistically 
significant clusters of crashes are involved with young inexperienced drivers, 
special investigation should be needed at those locations. Also, findings from 
previous research indicate crashes tend to be clustered in regions with high 
poverty. This study uses census track population density data, socio-economic 
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data such as the percentage of populations below poverty and age distribution 
data to create surface data in raster GIS. These layers are then overlaid with 
crash clusters to detect any special association.  
 
Spatial variables 
Besides crash data, demographic distribution and socio-economic data, some 
spatial variables that are used in this study are locations of schools and drinking 
establishments. While one might question the inclusion of these two particular 
spatial variables in this study; they are considered because they span the range 
of what might be considered to be truly causal or surrogate of causal variables in 
traffic safety. It is of interest to investigate if spatial features such as schools or 
drinking establishments like bars and pubs have strong influence in pedestrian 
crash occurrence. While, it is not claimed, that the spatial variables are perfect 
measures for the underlying causal mechanisms, but it is believed that all 
variables are capturing the effect of underlying causal mechanisms even if not 
directly causal.   
 
While school-zone related data was directly obtained from the County, finding the 
locations of drinking establishments was not as straightforward.  First of all, the 
availability of a GIS layer representing all the drinking locations did not exist. 
Secondly, the available GIS tiger files show the locations of establishments with 
liquor licenses; however, these may not be locations where people go, spend 
time and drink alcohol. For example, many supermarkets obtain liquor licenses, 
however it is unlikely that alcohol purchased at these locations will also be 
consumed there. To deal with this problem, addresses of bars and pubs were 
identified from the yellow pages. Then geo-coding service in GIS was used to 
locate those addresses on street map and a new layer was created showing the 
location of bars and pubs as a point. These two layers are overlaid with crash 
layers and demographic distribution layers to reveal their association with crash 
hot spots.  
 
The spatial statistical method in GIS 
 
To examine the spatial pattern of crashes this study focused on fatal, severe and 
minor injury crashes rather than total number of crashes. Also pedestrian 
crashes are examined to check their patterns. As mentioned earlier, spatial 
autocorrelation method is advancement over quadrant or nearest neighbor 
methods of spatial pattern detection as it takes not only the location of points but 
also the attributes of the locations into account. As a result, this is a useful 
technique to detect locations with higher than average probability of injury crash 
occurrence— crashes involving huge economic burden for any jurisdiction. To 
perform this task, spatial autocorrelation coefficient using Moran’s I index and 
associated Z-score are computed for fatal and injury crashes. As mentioned 
already, a high positive Z score for a feature indicates that the surrounding 
features have similar values. Hence the locations where fatal and injury crashes 
have Z-scores of >=2 are locations with statistically significant crash clusters at 
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the α =0.05 level. These intersections are extracted from the original analysis 
and are displayed in Figure 1. From this figure, it is quiet clear that there are four 
main regions in the City, i.e. northern, eastern, middle and southern part where 
fatal and injury crashes are concentrated. Once these regions are investigated 
closely, it is identified that in all these four zones, pedestrian fatal crash clusters 
are located within quarter mile radius of schools near the intersections. However, 
no such strong association is observed in case of severe or minor pedestrian 
crashes. Also a close look at Figures 2, 3, 4 and 5 indicates that vehicle related 
fatal crash clusters are not very close to schools or even bars or pubs. On the 
other hand, severe and minor crashes that are not related to pedestrian tend to 
be clustered near bars and pubs. From these maps it is also observed that each 
zone 1 and 2 consists of at least one intersection that has cluster of fatal, severe 
as well as minor injury crashes, and they are eventually close to bars and pubs. 
When these crash clusters are compared with population density (Figure 6) and 
poverty distributions (Figure 7), it is generally observed that crash clusters are 
present in medium to high density locations and not so much in locations with 
lower population densities. However, crash clusters seem to have a weak 
correlation with poverty in this study. For example, the zone 2 in Figure 7 
represents very high population below poverty than zone 1, 3 and 4, but zone 3 
is associated with large numbers of crash clusters of any type. Hence, it is hard 
to conclude the correlation between poverty and crash clusters in this study. 
However, from these crash distributions it is quite clear that zone 2 and zone 3 
requires much attention in terms of safety enhancement. Finally, the crash 
clusters are overlaid with two different age distributions, age 15-24 (Figure 8) and 
age 65 and up (Figure 9). While Figure 8 did not indicate any positive correlation 
with young population and crash clusters, Figure 9 shows that elderly are 
involved in crashes in locations with medium to high elderly population. As 
teenage and young drivers tend to be overrepresented in crash data and elderly 
population have the highest involvement rate in terms of number of crashes per 
mile driven, these are the two population distributions are investigated in details. 
The result of these map analyses shows that crash involvements of young 
drivers are somewhat sporadic but are often near spatial features such as 
schools and pubs. However, further investigations of specific locations are 
needed before establishing any correlation with crash clusters and specific age 
groups.      
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Figure 1: Distribution of crash clusters with schools and bars and pubs. 
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Figure 2: Distribution of crash clusters with schools and bars and pubs, 
Zone 1. 
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Figure 3: Distribution of crash clusters with schools and bars and pubs, 
Zone 2. 
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Figure 4: Distribution of crash clusters with schools and bars and pubs, 
Zone 3. 
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Figure 5: Distribution of crash clusters with schools and bars and pubs, 
Zone 4. 
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Figure 6: Crash clusters with population density, schools, and bars and 
pubs. 
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Figure 7: Crash clusters with percent below poverty, schools, and bars and 
pubs. 



 18

 
Figure 8: Crash clusters by drivers age 24 and under with density of 
persons age 24 and under, schools, and bars and pubs. 
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Figure 9: Crash clusters by drivers age 65 and up with density of persons 
age 65 and up and bars and pubs. 
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CONCLUSIONS 
 
This study develops a GIS based methodology for fatal, injury and pedestrian 
crash cluster mapping and analysis using crash data and various spatial, 
demographic and socioeconomic data available from a real city in the USA. The 
cluster detection in this study used readily available spatial autocorrelation tools 
in GIS to identify crash clusters. As a result, this method is straightforward to 
apply but at the same time accurate in meaning that crash clusters are not just 
detected by frequency or crash concentration/density but by investigating the 
spatial correlation of the crash attributes. Statistical significance of these created 
clusters is also checked with Z-statistics. Once these clusters are mapped, 
subjective judgments are used to detect clusters that are associated with spatial 
attributes such as schools, bars and pubs, population density, age distribution 
and poverty data. The output map analysis indicates that there are some 
correlations with school locations and pedestrian crashes as well as bars and 
pubs with minor and severe crashes related to vehicles. In addition some 
common patterns of higher number of minor and severe injury clusters are 
observed across locations with high density populations, but correlation with 
socioeconomic distribution such as percentage of people below poverty or age 
distribution are not very significant. Once these maps are created and checked, 
they may help local transportation agencies to understand issues of fatal, injury 
and pedestrian crashes so that further site specific investigations are possible to 
enhance safety.  
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